10,514 research outputs found

    Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere

    Get PDF
    Initial Cassini observations have revealed evidence for interchanging magnetic flux tubes in the inner Saturnian magnetosphere. Some of the reported flux tubes differ remarkably by their magnetic signatures, having a depressed or enhanced magnetic pressure relative to their surroundings. The ones with stronger fields have been interpreted previously as either outward moving mass-loaded or inward moving plasma-depleted flux tubes based on magnetometer observations only. We use detailed multi-instrumental observations of small and large density depletions in the inner Saturnian magnetosphere from Cassini Rev. A orbit that enable us to discriminate amongst the two previous and opposite interpretations. Our analysis undoubtedly confirms the similar nature of both types of reported interchanging magnetic flux tubes, which are plasma-depleted, whatever their magnetic signatures are. Their different magnetic signature is clearly an effect associated with latitude. These Saturnian plasma-depleted flux tubes ultimately may play a similar role as the Jovian ones

    The Sunyaev-Zel'dovich effects from a cosmological hydrodynamical simulation: large-scale properties and correlation with the soft X-ray signal

    Get PDF
    Using the results of a cosmological hydrodynamical simulation of the concordance LambdaCDM model, we study the global properties of the Sunyaev-Zel'dovich (SZ) effects, both considering the thermal (tSZ) and the kinetic (kSZ) component. The simulation follows gravitation and gas dynamics and includes also several physical processes that affect the baryonic component, like a simple reionization scenario, radiative cooling, star formation and supernova feedback. Starting from the outputs of the simulation we create mock maps of the SZ signals due to the large structures of the Universe integrated in the range 0 < z < 6. We predict that the Compton y-parameter has an average value of (1.19 +/- 0.32) 10^-6 and is lognormally distributed in the sky; half of the whole signal comes from z < 1 and about 10 per cent from z > 2. The Doppler b-parameter shows approximately a normal distribution with vanishing mean value and a standard deviation of 1.6 10^-6, with a significant contribution from high-redshift (z > 3) gas. We find that the tSZ effect is expected to dominate the primary CMB anisotropies for l >~ 3000 in the Rayleigh-Jeans limit, while interestingly the kSZ effect dominates at all frequencies at very high multipoles (l >~ 7 10^4). We also analyse the cross-correlation between the two SZ effects and the soft (0.5-2 keV) X-ray emission from the intergalactic medium and we obtain a strong correlation between the three signals, especially between X-ray emission and tSZ effect (r_l ~ 0.8-0.9) at all angular scales.Comment: 12 pages, 15 figures. Accepted for publication in MNRAS. Minor changes, added reference

    Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency

    Get PDF
    © 2016 The Author(s).The gag gene is highly polymorphic across HIV-1 subtypes and contributes to susceptibility to protease inhibitors (PI), a critical class of antiretrovirals that will be used in up to 2 million individuals as second-line therapy in sub Saharan Africa by 2020. Given subtype C represents around half of all HIV-1 infections globally, we examined PI susceptibility in subtype C viruses from treatment-naïve individuals. PI susceptibility was measured in a single round infection assay of full-length, replication competent MJ4/gag chimeric viruses, encoding the gag gene and 142 nucleotides of pro derived from viruses in 20 patients in the Zambia-Emory HIV Research Project acute infection cohort. Ten-fold variation in susceptibility to PIs atazanavir and lopinavir was observed across 20 viruses, with EC50 s ranging 0.71-6.95 nM for atazanvir and 0.64-8.54 nM for lopinavir. Ten amino acid residues in Gag correlated with lopinavir EC50 (p < 0.01), of which 380 K and 389I showed modest impacts on in vitro drug susceptibility. Finally a significant relationship between drug susceptibility and replication capacity was observed for atazanavir and lopinavir but not darunavir. Our findings demonstrate large variation in susceptibility of PI-naïve subtype C viruses that appears to correlate with replication efficiency and could impact clinical outcomes

    Revisiting the Long/Soft-Short/Hard Classification of Gamma-Ray Bursts in the Fermi Era

    Full text link
    We perform a statistical analysis of the temporal and spectral properties of the latest Fermi gamma-ray bursts (GRBs) to revisit the classification of GRBs. We find that the bimodalities of duration and the energy ratio (EpeakE_{\mathrm{peak}}/Fluence) and the anti-correlation between spectral hardness (hardness ratio (HRHR), peak energy and spectral index) and duration (T90T_{90}) support the long/soft −- short/hard classification scheme for Fermi GRBs. The HR−T90HR - T_{90} anti-correlation strongly depends upon the spectral shape of GRBs and energy bands, and the bursts with the curved spectra in the typical BATSE energy bands show a tighter anti-correlation than those with the power-law spectra in the typical BAT energy bands. This might explain why the HR−T90HR - T_{90} correlation is not evident for those GRB samples detected by instruments like {\it Swift} with a narrower/softer energy bandpass. We also analyze the intrinsic energy correlation for the GRBs with measured redshifts and well defined peak energies. The current sample suggests Ep,rest=2455×(Eiso/1052)0.59E_{\mathrm{p,rest}}=2455\times (E_{\mathrm{iso}}/10^{52})^{0.59} for short GRBs, significantly different from that for long GRBs. However, both the long and short GRBs comply with the same Ep,rest−LisoE_{\mathrm{p,rest}}-L_{\mathrm{iso}} correlation.Comment: 17 pages, 9 figures, 4 tables. Accepted for publication in Ap

    Simultaneous Dual Frequency Observations of Giant Pulses from the Crab Pulsar

    Get PDF
    Simultaneous measurements of giant pulses from the Crab pulsar were taken at two widely spaced frequencies using the real-time detection of a giant pulse at 1.4 GHz at the Very Large Array to trigger the observation of that same pulse at 0.6 GHz at a 25-m telescope in Green Bank, WV. Interstellar dispersion of the signals provided the necessary time to communicate the trigger across the country via the Internet. About 70% of the pulses are seen at both 1.4 GHz and 0.6 GHz, implying an emission mechanism bandwidth of at least 0.8 GHz at 1 GHz for pulse structure on time scales of one to ten microseconds. The arrival times at both frequencies display a jitter of 100 microseconds within the window defined by the average main pulse profile and are tightly correlated. This tight correlation places limits on both the emission mechanism and on frequency dependent propagation within the magnetosphere. At 1.4 GHz the giant pulses are resolved into several, closely spaced components. Simultaneous observations at 1.4 GHz and 4.9 GHz show that the component splitting is frequency independent. We conclude that the multiplicity of components is intrinsic to the emission from the pulsar, and reject the hypothesis that this is the result of multiple imaging as the signal propagates through the perturbed thermal plasma in the surrounding nebula. At both 1.4 GHz and 0.6 GHz the pulses are characterized by a fast rise time and an exponential decay time which are correlated. The pulse broadening with its exponential decay form is most likely the result of multipath propagation in intervening ionized gas.Comment: LaTeX, 18 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Fluid-membrane tethers: minimal surfaces and elastic boundary layers

    Full text link
    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.Comment: 12 page

    The thermal SZ tomography

    Full text link
    The thermal Sunyaev-Zel'dovich (tSZ) effect directly measures the thermal pressure of free electrons integrated along the line of sight and thus contains valuable information on the thermal history of the universe. However, the redshift information is entangled in the projection along the line of sight. This projection effect severely degrades the power of the tSZ effect to reconstruct the thermal history. We investigate the tSZ tomography technique to recover this otherwise lost redshift information by cross correlating the tSZ effect with galaxies of known redshifts, or alternatively with matter distribution reconstructed from weak lensing tomography. We investigate in detail the 3D distribution of the gas thermal pressure and its relation with the matter distribution, through our adiabatic hydrodynamic simulation and the one with additional gastrophysics including radiative cooling, star formation and supernova feedback. (1) We find a strong correlation between the gas pressure and matter distribution, with a typical cross correlation coefficient r ~ 0.7 at k . 3h/Mpc and z < 2. This tight correlation will enable robust cross correlation measurement between SZ surveys such as Planck, ACT and SPT and lensing surveys such as DES and LSST, at ~20-100{\sigma} level. (2) We propose a tomography technique to convert the measured cross correlation into the contribution from gas in each redshift bin to the tSZ power spectrum. Uncertainties in gastrophysics may affect the reconstruction at ~ 2% level, due to the ~ 1% impact of gastrophysics on r, found in our simulations. However, we find that the same gastrophysics affects the tSZ power spectrum at ~ 40% level, so it is robust to infer the gastrophysics from the reconstructed redshift resolved contribution.Comment: 10 pages, 7 figures, 2 appendices, accepted by Ap

    Convoluted CC-cosine functions and semigroups. Relations with ultradistribution and hyperfunction sines

    Get PDF
    Convoluted CC-cosine functions and semigroups in a Banach space setting extending the classes of fractionally integrated CC-cosine functions and semigroups are systematically analyzed. Structural properties of such operator families are obtained. Relations between convoluted CC-cosine functions and analytic convoluted CC-semigroups, introduced and investigated in this paper are given through the convoluted version of the abstract Weierstrass formula which is also proved in the paper. Ultradistribution and hyperfunction sines are connected with analytic convoluted semigroups and ultradistribution semigroups. Several examples of operators generating convoluted cosine functions, (analytic) convoluted semigroups as well as hyperfunction and ultradistribution sines illustrate the abstract approach of the authors. As an application, it is proved that the polyharmonic operator (−Δ)2n,(-\Delta)^{2^{n}}, n∈N,n\in {\mathbb N}, acting on L2[0,π]L^{2}[0,\pi] with appropriate boundary conditions, generates an exponentially bounded KnK_{n}-convoluted cosine function, and consequently, an exponentially bounded analytic Kn+1K_{n+1}-convoluted semigroup of angle π2,\frac{\pi}{2}, for suitable exponentially bounded kernels KnK_{n} and $K_{n+1}.

    A Holographic Model of Strange Metals

    Full text link
    We give a review on our recent work arXiv:1006.0779 [hep-th] and arXiv:1006.1719 [hep-th], in which properties of holographic strange metals were investigated. The background is chosen to be anisotropic scaling solution in Einstein-Maxwell-Dilaton theory with a Liouville potential. The effects of bulk Maxwell field, an extra U(1) gauge field and probe D-branes on the DC conductivity, the DC Hall conductivity and the AC conductivity are extensively analyzed. We classify behaviors of the conductivities according to the parameter ranges in the bulk theory and characterize conditions when the holographic results can reproduce experimental data.Comment: 34 pages, 15 figures, minor correction
    • 

    corecore